Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Trace Elem Med Biol ; 73: 127044, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936888

ABSTRACT

COVID-19 is a rapidly spreading disease, which has caught the world by surprise. Millions of people suffer from illness, and the mortality rates are dramatically high. Currently, there is no specific and immediate treatment for this disease. Remedies are limited to supportive regiments and few antiviral and anti-inflammatory drugs. The lack of a definite cure for COVID-19 is the reason behind its high mortality and global prevalence. COVID-19 can lead to a critical illness with severe respiratory distress and cytokine release. Increased oxidative stress and excessive production of inflammatory cytokines are vital components of severe COVID-19. Micronutrients, metalloids, and vitamins such as iron, manganese, selenium, Zinc, Copper, vitamin A, B family, and C are among the essential and trace elements that play a pivotal role in human nutrition and health. They participate in metabolic processes that lead to energy production. In addition, they support immune functions and act as antioxidants. Therefore, maintaining an optimal level of micronutrients intake, particularly those with antioxidant activities, is essential to fight against oxidative stress, modulate inflammation, and boost the immune system. Therefore, these factors could play a crucial role in COVID-19 prevention and treatment. In this review, we aimed to summarize antiviral properties of different vitamins and minerals. Moreover, we will investigate the correlation between them and their effects in COVID-19 patients.


Subject(s)
COVID-19 Drug Treatment , Selenium , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antiviral Agents , Dietary Supplements , Humans , Micronutrients/pharmacology , Micronutrients/therapeutic use , Minerals/therapeutic use , Selenium/therapeutic use , Vitamin A , Vitamins/pharmacology , Vitamins/therapeutic use
2.
Front Immunol ; 12: 705772, 2021.
Article in English | MEDLINE | ID: covidwho-1376700

ABSTRACT

Autoimmune diseases (ADs) could occur due to infectious diseases and vaccination programs. Since millions of people are expected to be infected with SARS-CoV-2 and vaccinated against it, autoimmune consequences seem inevitable. Therefore, we have investigated the whole proteome of the SARS-CoV-2 for its ability to trigger ADs. In this regard, the entire proteome of the SARS-CoV-2 was chopped into more than 48000 peptides. The produced peptides were searched against the entire human proteome to find shared peptides with similar experimentally confirmed T-cell and B-cell epitopes. The obtained peptides were checked for their ability to bind to HLA molecules. The possible population coverage was calculated for the most potent peptides. The obtained results indicated that the SARS-CoV-2 and human proteomes share 23 peptides originated from ORF1ab polyprotein, nonstructural protein NS7a, Surface glycoprotein, and Envelope protein of SARS-CoV-2. Among these peptides, 21 peptides had experimentally confirmed equivalent epitopes. Amongst, only nine peptides were predicted to bind to HLAs with known global allele frequency data, and three peptides were able to bind to experimentally confirmed HLAs of equivalent epitopes. Given the HLAs which have already been reported to be associated with ADs, the ESGLKTIL, RYPANSIV, NVAITRAK, and RRARSVAS were determined to be the most harmful peptides of the SARS-CoV-2 proteome. It would be expected that the COVID-19 pandemic and the vaccination against this pathogen could significantly increase the ADs incidences, especially in populations harboring HLA-B*08:01, HLA-A*024:02, HLA-A*11:01 and HLA-B*27:05. The Southeast Asia, East Asia, and Oceania are at higher risk of AD development.


Subject(s)
Autoimmunity , COVID-19 Vaccines/immunology , COVID-19/immunology , Proteome/immunology , SARS-CoV-2/immunology , Viral Proteins/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/immunology , COVID-19/complications , COVID-19 Vaccines/adverse effects , Computer Simulation , Epitopes, B-Lymphocyte/immunology , HLA Antigens/immunology , Humans , Peptide Fragments/immunology , Peptide Library
SELECTION OF CITATIONS
SEARCH DETAIL